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57 ABSTRACT 

A method and apparatus for Visualizing a multi-dimensional 
data Set in which the multi-dimensional data Set is clustered 
into k clusters, with each cluster having a centroid. Then, 
either two distinct current centroids or three distinct non 
collinear current centroids are Selected. A current 
2-dimensional cluster projection is generated based on the 
Selected current centroids. In the case when two distinct 
current centroids are Selected, two distinct target centroids 
are Selected, with at least one of the two target centroids 
being different from the two current centroids. In the case 
When three distinct current centroids are Selected, three 
distinct non-collinear target centroids are Selected, with at 
least one of the three target centroids being different from 
the three current centroids. An intermediate 2-dimensional 
cluster projection is generated based on a Set of interpolated 
centroids, with each interpolated centroid corresponding to 
a current centroid and to a target centroid associated with the 
current centroid. Each interpolated centroid is interpolated 
between the corresponding current centroid and the target 
centroid associated with the current centroid. Alternatively, 
the intermediate 2-dimensional cluster projection is gener 
ated based on an interpolated 2-dimensional nonlinear clus 
ter projection that is based on the Selected current centroids 
and the Selected target centroids. 

40 Claims, 14 Drawing Sheets 
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METHOD AND APPARATUS FOR CLUSTER 
EXPLORATION AND VISUALIZATION 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The present invention relates to the field of computing. 
More particularly, the present invention relates to a method 
and an apparatus for performing dynamic exploratory visual 
data analysis. 

2. Description of the Related Art 
Clustering, the grouping together of Similar data points in 

a data Set, is a widely used procedure for Statistically 
analyzing data. Practical applications of clustering include 
unsupervised classification and taxonomy generation, 
nearest-neighbor Searching, Scientific discovery, vector 
quantization, text analysis and navigation, data reduction 
and Summarization, Supermarket database analysis, 
customer/market Segmentation, and time Series analysis. 
One of the more popular techniques for clustering data in 

a data Set is by using the k-means algorithm which generates 
a minimum variance grouping of data by minimizing the 
Sum of Squared Euclidean distances from cluster centroids. 
The popularity of the k-means algorithm is based on its ease 
of interpretation, simplicity of implementation, Scalability, 
Speed of convergence, parallelizability, adaptability to 
sparse data, and ease of out-of-core implementation. Varia 
tions of the k-means algorithm exist for numerical, categori 
cal and mixed attributes. Variations of the k-means algo 
rithm also exist for Similarity measures other than a 
Euclidean distance. 

Statistical and computational issues associated with the 
k-means algorithm have received considerable attention. 
The same cannot be Said, however, for another key ingre 
dient for multidimensional data analysis: Visualization, or 
the exploratory data analysis based on dynamic computer 
graphics. 

Conventional exploratory data analysis techniques use 
unsupervised dimensionality reduction methods for process 
ing multidimensional data Sets. Examples of popular con 
ventional unsupervised dimensionality reduction methods 
used for projecting high-dimensional data to fewer dimen 
Sions for Visualization include truncated Singular value 
decomposition, projection pursuit, Sammon mapping, multi 
dimensional Scaling and a nonlinear projection method 
based on Kohonen's topology preserving maps. 

Truncated Singular value decomposition is a global, linear 
projection methodology that is closely related to principal 
component analysis (PCA). Projection pursuit combines 
both global and local properties of multi-dimensional data 
Sets to find useful and interesting projections. For example, 
See J. Friedman et al., A projection pursuit algorithm for 
exploratory data analysis, IEEE Transactions on Computers, 
C-23, pp. 881–890, 1994; P. Huber, Projection pursuit (with 
discussion), Annals of Statistics, 13, pp. 435-525, 1985; and 
D. Cook et al., Grand tour and projection pursuit, Journal of 
Computational and Graphical Statistics, 4(3), pp. 155-172, 
1995. 

Sammon mapping and multi-dimensional Scaling are each 
nonlinear projection methods used for projecting multi 
dimensional data to fewer dimensions. For details regarding 
Sammon mapping, See, J. W. Sammon, Anonlinear mapping 
algorithm for data struction analysis, IEEE Transactions on 
Computers, Vol. 18, pp. 491-509, 1969. For details regard 
ing multi-dimensional Scaling, See J. B. Kruskal, Nonmetric 
multidimensional Scaling: A numerical method, 
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2 
Psychometrika, Vol. 29. pp. 115-129, 1964, and J. B. 
Kruskal, Multidimensional Scaling and other method for 
discovering structure, Statistical Methods for Digital 
Computers, K. Enslein et al. editors, Wiley, pp. 296-339, 
1977. 

The basic idea for Sammon mapping and multi 
dimensional Scaling is to minimize the mean-Squared dif 
ference between interpoint distances in the original Space 
and interpoint distances in the projected Space. The nonlin 
ear mappings produced by Sammon's method and multi 
dimensional Scaling are difficult to interpret and are gener 
ally computationally expensive. 
A recently proposed a nonlinear projection method for 

Visualizing high-dimensional data as a two-dimensional 
image uses Kohonen's topology preserving maps. See, for 
example, M. A. Kraaijveld et al., A nonlinear projection 
method based on Kohonen's topology preserving maps, 
IEEE Transactions on Neural Networks, Vol 6(3), pp. 
548-559, 1995. For background regarding Kohonen's topol 
ogy preserving maps, See T. Kohonen, Self Organization and 
Associative Memory, Springer-Verlag, 1989. This approach 
generates only a 2-dimensional projection and not a set of 
projections, So it does not appear possible to construct 
guided tours based on this approach method. 
What is needed is a way to visualize a multi-dimensional 

data Set in relation to clusters that have been produced by the 
k-means algorithm. What is also needed is a way to visually 
understand the proximity relationship between the cluster 
centroids of a data Set. 

SUMMARY OF THE INVENTION 

The present invention provides a way to visualize a 
multi-dimensional data Set in relation to clusters that have 
been produced by the k-means algorithm and a way to 
Visually understand the proximity relationship between the 
cluster centroids of the data Set. 
The advantages of the present invention are provided by 

a method for visualizing a multi-dimensional data Set in 
which the multi-dimensional data Set is clustered into k 
clusters, with each cluster having a centroid. Then, either 
two distinct current centroids or three distinct non-collinear 
current centroids are Selected. A current 2-dimensional clus 
ter projection is generated based on the Selected current 
centroids. In the case when two distinct current centroids are 
Selected, two distinct target centroids are Selected, with at 
least one of the two target centroids being different from the 
two current centroids. In the case when three distinct current 
centroids are Selected, three distinct non-collinear target 
centroids are Selected, with at least one of the three target 
centroids being different from the three current centroids. 

According to one aspect of the invention, each current 
centroid is associated with a target centroid, and an inter 
mediate 2-dimensional cluster projection is repeatedly gen 
erated based on a Set of interpolated centroids, with each 
interpolated centroid corresponding to a current centroid and 
to the target centroid associated with the current centroid. 
When the intermediate 2-dimensional cluster projection is 
repeatedly generated, each interpolated centroid is interpo 
lated between the corresponding current centroid and the 
asSociated target centroid based on a value of an interpola 
tion parameter that is preferably monotonically increased, 
thereby generating a holistic image of the multi-dimensional 
data Set with respect to the current centroids and the target 
centroids. 
To generate a visual tour of the data Set based on inter 

polated centroids, the Selected target centroids are redefined 
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to be new current centroids. In the case when two new 
current centroids are defined from the Selected target 
centroids, two distinct new target centroids are Selected Such 
that at least one of the two distinct new target centroids is 
different from the two new current centroids. In the case 
when three distinct non-collinear new current centroids are 
defined from the Selected target centroids, three distinct 
non-collinear new target centroids are Selected Such that at 
least one of the three distinct non-collinear new target 
centroids is different from the three distinct non-collinear 
new current centroids. Each new current centroid is associ 
ated with a new target centroid, and an intermediate 
2-dimensional cluster projection is generated based on a Set 
of new interpolated centroids. AS before, each interpolated 
centroid of the new set of interpolated centroids corresponds 
to a new current centroid and to the associated new target 
centroid, and each new interpolated centroid is interpolated 
between the corresponding new current centroid and the 
asSociated new target centroid. 
The Steps of defining new current centroids, Selecting new 

target centroids, associating each new current centroid with 
a new target centroid, and generating the intermediate 
2-dimensional cluster projection are performed repeatedly, 
thereby generating the visual tour and providing a holistic 
image of the multi-dimensional data Set with respect to each 
Set of current centroids and the target centroids associated 
with a set of current centroids. 

An average least-Squares reconstruction error is calcu 
lated for at least one 2-dimensional cluster projection. 
Likewise, an average least-Squares reconstruction error is 
calculated based on a truncated Singular value decomposi 
tion of the data Set. Each calculated average least-Square 
reconstruction error is then compared to the calculated 
average least-Square construction error and displayed. 

According to another aspect of the invention, the Step of 
generating the intermediate 2-dimensional cluster projection 
generates an interpolated 2-dimensional cluster projection 
based on the Selected current centroids, the Selected target 
centroids and an interpolation parameter. The intermediate 
2-dimensional cluster projection is repeatedly generated 
based on different values of the interpolation parameter. 
Preferably, the value of the interpolation parameter is mono 
tonically increased, thereby generating a holistic image of 
the multi-dimensional data Set with respect to the current 
centroids and the target centroids that follows, for example, 
a geodesic path between the current centroids and the target 
centroids associated with the current centroids. 

To generate a Visual tour of the data Set for interpolated 
2-dimensional cluster projections, the Selected target cen 
troids are redefined to be new current centroids. In the case 
when two new current centroids are defined from the 
Selected target centroids, two distinct new target centroids 
are Selected Such that at least one of the two distinct new 
target centroids is different from the two new current cen 
troids. In the case when three distinct non-collinear new 
current centroids are defined from the Selected target 
centroids, three distinct non-collinear new target centroids 
are Selected Such that at least one of the three distinct 
non-collinear new target centroids is different from the three 
distinct non-collinear new current centroids. An intermedi 
ate 2-dimensional cluster projection is generated based on a 
Set of new current and target centroids. 

For this aspect of the invention, the Steps of defining new 
current centroids, Selecting new target centroids, and gen 
erating the intermediate 2-dimensional cluster projection are 
performed repeatedly, thereby generating the Visual tour and 
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4 
providing a holistic image of the multi-dimensional data Set 
with respect to each Set of current centroids and the target 
centroids. 

BRIEF DESCRIPTION OF THE DRAWING 

The present invention is illustrated by way of example 
and is not limited as illustrated in the accompanying figures 
in which like reference numerals indicate similar elements 
and in which: 

FIG. 1 shows an exemplary 2-dimensional linear cluster 
projection obtained by partitioning Fisher's Iris data Set, 
FIG.2 shows a 2-dimensional linear cluster projection for 

an artificial test data set having n=1500 data points and p=50 
dimensions, 

FIG.3 shows a 2-dimensional nonlinear cluster projection 
obtained by partitioning Fisher's Iris data Set, 

FIG. 4 shows “taboo' regions for data points for the 
2-dimensional nonlinear cluster projection of FIG. 3; 

FIG. 5(a) shows 2-dimensional nonlinear cluster projec 
tions for spheres S(Cr) and S(Cr); 

FIG. 5(b) shows 2-dimensional nonlinear cluster projec 
tions for points lying inside of balls B(Cr) and B(Cr); 

FIG. 6 shows a 2-dimensional nonlinear cluster projection 
obtained by clustering the data points contained in the upper 
cluster shown in FIG. 3 into 2 clusters; 
FIG.7 shows a 2-dimensional nonlinear cluster projection 

of a binary insurance data Set; 
FIG.8 shows a 2-dimensional nonlinear cluster projection 

of the artificial data set used in FIG. 3 clustered into 5 
clusters, 

FIG. 9 shows a complete 2-dimension al example for a 
general p-dimensional case of a nonlinear projection; 

FIG. 10(a) shows E, (k+1), E(k), and E(k) for the 
Ionosphere data Set plotted as a function of k, 

FIG. 10(b)) shows E, (k+1), E(k), and E(k) for the 
Ionosphere data Set having data that is centered by Subtract 
ing the mean and plotted as a function of k, 

FIG. 11 shows the average least-Square errors of the 
k-means algorithm and a nonlinear cluster-guided tour as a 
function of the number of iterations (or Steps) of the k-means 
algorithm of the Ionosphere with the number of clusters 
equal to 5; and 

FIG. 12 shows a program Storage device having a storage 
area that Stores a program embodying the cluster exploration 
and Visualization technique of the present invention. 

DETAILED DESCRIPTION 

The present invention provides a way to visualize a 
multi-dimensional data Set in relation to clusters that have 
been produced by the k-means algorithm. The present inven 
tion also provides a way to visually understand the proxim 
ity relationship between the cluster centroids of the data Set. 
To illustrate the present invention, consider a Set of n data 

points {X}" each taking values in a p-dimensional 
Euclidean space R, with pe3. Let X=(X1, . . . , X) and 
Y=(Y,..., Y) denote two points in R. The dot product 
of X and Y is denoted as 

p (1) 
Xo- X. XY. 

it=1 
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The Euclidean norm of X s 

|X=vXX. (2) 

The Euclidean distance between X and Y is 

ASSume that the data Set has been partitioned into k 
clusters using the k-means algorithm, and let {C}i- denote 
the respective centroids of the clusters. Each centroid is 
Simply an average of all the data points contained in a 
cluster. 
A 2-dimensional linear cluster projection can be obtained 

by projecting the data set {X}" onto the unique two-plane 
in R determined for any three distinct and non-collinear 
cluster centroids C, C, and C. in {C}. Mathematically, 
the two-plane form by C, C, and C is simply the linear 
Subspace 

L(C, C, C)=span (C-C, C-C) CR. (4) 

Let K and K- constitute an orthonormal basis of L(C, 
C.C.). A 2-dimensional linear cluster projection can be 
computed by projecting the data set {X}" onto the 
orthonormal basis {K.K. Given k cluster centroids, there 
are at most () unique 2-dimensional linear cluster projec 
tions. Each linear cluster projection allows the multi 
dimensional data Set to be visualized in relation to a triplet 
of cluster centroids. 
An exemplary algorithm for computing a 2-dimensional 

linear cluster projection is given by the following 
pseudocode: 

proc LinearProjec (n,{X}";-1, K1, K2) = 
X: = 1; y: = 1; 
for i: = 1 to n step 1 do 

V(x): = X, o ki; V (y): = Xi o K 
od; 
return ({V}"); 

end 

Two-dimensional linear cluster projections of data Set 
{X}" are a continuous transformation of the data. 
Consequently, two points that are close in R will remain 
close in the linear Subspace L(C,C,C). Two points that are 
close in L(C.C.C.), however, may not necessarily be close 
in RP. 

FIG. 1 shows an exemplary 2-dimensional linear cluster 
projection 10 obtained by partitioning Fisher's Iris data set 
into 3 clusters. Fisher's Iris data set is disclosed by C. J. 
Merz et al., UCI repository of machine learning databases, 
University of California, Department of Information and 
Computer Science, Irvine, Calif., and incorporated by ref 
erence herein. Additionally, Fisher's Iris data set is available 
on the Internet at http://www.ics.uci.edu./~mlearn/ 
MLRespository.html. The Iris data includes n=150 data 
points and p=4 dimensions. Clusters generated using the 
k-means algorithm are separated by (p-1)-dimensional 
hyperplanes. FIG. 1 is enhanced by also projecting the 
three-dimensional hyperplanes 11, 12 and 13 Separating the 
three cluster centroids onto the two-plane L(CCC). 
AS another example of a 2-dimensional linear cluster 

projection, an artificial test data Set having n=1500 data 
points and p=50 dimensions, with five of the dimensions 
being noise dimensions. The artificial data was generated 
using clusge n.c., which is available at http:// 
alexia.lis.uiuc.edu/~dubin/, and which is based on an algo 
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6 
rithm disclosed by G. Milligan, An algorithm for creating 
artificial test clusters, Psychometrika, 50(1): 123-127, 1985, 
and incorporated by reference herein. The data Set was 
partitioned into k=5 clusters. FIG. 2 shows a 2-dimensional 
linear cluster projection 20 of the five clusters 21-25. The 
linear cluster projection of FIG. 2 is but one of the () 
possible projections for the artificial test data Set. 
A 2-dimensional nonlinear cluster projection can be com 

puted by computing the Euclidean distance of each data 
point X, 1s is n, to each of the two distinct cluster centroids 
in C, and C, in {C}. Given k cluster centroids, there are 
at most () unique 2-dimensional nonlinear cluster projec 
tions. Each nonlinear cluster projection allows the multi 
dimensional data Set to be visualized in relation to a pair of 
cluster centroids. 
An exemplary algorithm for computing a 2-dimensional 

nonlinear cluster projection is given by the following pSue 
docode: 

FIG.3 shows a 2-dimensional nonlinear cluster projection 
30 obtained by partitioning Fisher's Iris data set into two 
clusters having centroids C and C. Unlike linear cluster 
projections, nonlinear cluster projections are not a projection 
of the data onto a two-plane. To aid in interpreting FIG. 3, 
nonlinear cluster projections have the following properties: 

1. For any two points X and Y in R, the Euclidean 
distance between X and Y is d(X,Y)20. Thus, nonlinear 
cluster projections are contained entirely in the positive 
quadrant. Furthermore, the y-coordinate of C and the 
X-coordinate of C, are the same, namely the distance d(C, 
C) between C and C. See, for example, the locations of 
centroids C and C, in FIG. 3. 

Let X be a point in R. It follows from the triangle 
inequality that 

The inequalities of Eq. (5) imply that no point can ever 
appear in any of the following regions: 

The “taboo' regions are indicated in FIG. 4 by regions 41. 
2. Similar to linear cluster projections, two points that are 

close in R will remain close in a nonlinear cluster projec 
tion. Further, two points that are close in the nonlinear 
cluster projection, however, may not necessarily be close in 
RP. 

3. Consider a sphere S(Cr) in R defined as 
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and a ball B(Cr) in R defined as 

Points lying on the sphere S(Cr) (or S(Cr)) having a 
center C (or C) and a radius r appear on a line that is 
parallel to and at a distance r from the y-axis (or X-axis) in 
a nonlinear cluster projection of the sphere. FIG. 5(a) shows 
2-dimensional nonlinear cluster projections 51 and 52 for 
spheres S(Cr) and S(Cr), respectively. It follows that 
points lying inside the ball B(Cr) (or B(Cr)) having a 
center C (or C) and a radius r appear inside a cone in the 
nonlinear cluster projections. FIG. 5(b) shows 
2-dimensional nonlinear cluster projections 53 and 54 for 
points lying inside of balls B(Cr) and B(Cr) respec 
tively. Points lying on a line connecting two centroids in R 
will appear on the line connecting the two centroids in R. 

Using the properties for interpreting 2-dimensional non 
linear cluster projections discussed So far, it can be seen 
from FIG. 3 that Fisher's Iris data set may consist of two 
ball-like Structures having centroids C and C, respectively. 
Further clustering all data points contained only in the 
cluster of centroid C, into 2 clusters and performing a 
2-dimensional nonlinear cluster projection of the cluster of 
centroid C, it can be seen that the cluster of centroid C, may 
be composed of two ball-like structures. FIG. 6 shows a 
2-dimensional nonlinear cluster projection 60 obtained by 
clustering the data points contained in the cluster of centroid 
C, of FIG.3 into 2 clusters. This interpretation is, in fact, the 
correct interpretation for Fisher's Iris data set. See, for 
example, FIG. 6.11 of R. O. Duda et al., Pattern Classifi 
cation and Scene Analysis, Wiley, 1973. 

4. If there are no points around a centroid in a 
2-dimensional nonlinear cluster projection, then the centroid 
does not provide a good representation for any Single data 
point in the cluster that the centroid represents. To illustrate 
this, consider p-dimensional binary data. Each data point in 
a p-dimensional binary data Set coincides with a vertex of 
the p-dimensional hypercube for the data Set. Each cluster 
centroid is simply an average of the data points contained in 
the cluster, So cluster centroids can generally take on frac 
tional values. Consequently, cluster centroids for binary data 
reside inside the hypercube and not on the vertices of the 
hypercube among the data points. This concept is shown in 
FIG. 7 which is a 2-dimensional nonlinear cluster projection 
70 for a binary insurance data set having n=13743 data 
points and p=56 dimensions is clustered into two clusters. 
Centroids C and C, do not reside among the data points for 
their respective clusters. The binary insurance data for this 
example was obtained from a real, but anonymous, insur 
ance company. 
AS another example, the artificial test data used earlier 

was partitioned into 5 clusters. FIG. 8 shows one of the () 
possible 2-dimensional nonlinear cluster projections 80. 
Comparing FIG. 8 with FIG. 2, it can be seen that the 
respective cluster centroids 81-85 are not necessarily a good 
representation of the data points contained in each corre 
sponding clusters. This effect is caused by noise dimensions 
within the artificial test data. 

To visualize a multi-dimensional data set {X}," that has 
been partitioned into k clusters using the k-means algorithm 
in relation to the cluster centroids {C}, instead of just in 
relation to a triplet or a pair of cluster centroids, the present 
invention uses concepts of a grand tour and of a guided tour 
to create an illusion of motion by moving Smoothly from one 
projection to the next using interpolation. For background 
regarding grand tours, See, for example, D. Asimov, The 
grand tour: A tool for viewing multidimensional data, SIAM 
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Journal on Scientific and Statistical Computing, 6(1), pp. 
128-143, 1985; D. Asimov et al., Grand tour methods: an 
outline, Proceedings of the 17th Symposium on Interface of 
Computer Science and Statistics, 1985; and A. Buja et al., 
Dynamic projections in high-dimensional Visualization: 
Theory and computational methods, Journal of Computa 
tional and Graphical Statistics, 1998. For background 
regarding guided tours, See for example, D. Cook et al., 
Grand tour and projection pursuit, Journal of Computational 
and Graphical Statistics, 4(3), pp. 155-172, 1995; and C. 
Hurley et al., Analyzing high-dimensional data with motion 
graphics, SIAM Journal of Scientific and Statistical 
Computing, 11(6), pp. 1193–1211, 1990. 

Previously, (-) 2-dimensional linear cluster projections 
and (2) 2-dimensional nonlinear cluster projections were 
computed for the multi-dimensional data set {X}". Each 
2-dimensional linear and each nonlinear cluster projection is 
like a "photograph'. An illusion of motion is created by 
moving Smoothly from one projection to the next using 
interpolation. AS many as four dimensions may be conveyed 
at a time by the motion, that is, two dimensions correspond 
ing to the projection and two (or less) dimensions corre 
sponding to the Velocity of the projection. A Smooth path 
through a 2-dimensional linear projection is referred to 
herein as a linear cluster-guided tour. Similarly, a nonlinear 
cluster projection is referred to herein as a nonlinear cluster 
guided tour. In contrast, cluster-guided tour provide a 
dynamic, more global perspective on the data Set. 
The basic idea behind a linear cluster-guided tour is 

Simple: Select a target 2-dimensional linear cluster projec 
tion at random from () possible projections, move 
Smoothly from the current projection to the target projection, 
and continue. To illustrate this, let L=L(CCC) and 
L=L(C.C.C) respectively denote a current two-plane and 
a target two-plane. According to the invention, a geodesic 
interpolation path is used for moving between the current 
and the target planes. Such a geodesic interpolation path is 
Simply a rotation in the (at most) 4-dimensional linear 
Subspace containing both the current and the target two 
planes. 
The basic idea behind a nonlinear cluster-guided tour is 

essentially the same as that for a linear cluster-guided tour. 
That is, Select a target 2-dimensional nonlinear cluster 
projection at random from (2) possible projections, move 
Smoothly from the current projection to the target projection, 
and continue. The present invention provides two techniques 
for providing a nonlinear cluster-guided tour based on 
interpolating centroids and based on interpolating projec 
tions. 
To illustrate a nonlinear cluster-guided tour based on 

interpolating centroids, consider a current projection that is 
determined by cluster centroids C and C, and a target 
projection that is determined by cluster centroids C and C. 
A pair of interpolated “centroids' are defined as 

OS 

where t is the interpolation parameter and is defined as 
Osts 1. In Eq. (9), as t moves from 0 to 1, the interpolated 
centroid C(t) moves from C to C along the Straight line 
joining C to C. Similarly, the interpolated centroid C(t) 
moves from C, to C along the Straight line joining C, to C. 
In Eq. (10), as t moves from 0 to 1, the interpolated centroid 
C(t) moves from C to C, along the Straight line joining C 
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to C, and the interpolated centroid C(t) moves from C, to 
C along the Straight line joining C, to C. An interpolated 
2-dimensional nonlinear cluster projection is obtained by 
computing the Euclidean distance of each point in the data 
set to each of the two interpolated “centroids”. An exem 
plary algorithm for implementing a nonlinear cluster-guided 
tour based on interpolated centroids is given by the follow 
ing pseudocode: 

proc NonlinearClusterGuidedTourA (n,{X}", {C}-1, stepSize) = 
(G.G.): = ChooseRandomlyFrom({C}); 
while (true) do 

(F.F.): = ChooseRandomlyFrom({C}, t): 
for t: = 0.0 to 1 step stepSize do 

H: = t + F + (1 - t) + G: 
H: = t + F + (1 - t) + G: 
interpolated Plot: = NonlinearProject(n,{X}", H., H-); 
ScatterPlot (interpolated Plot); 

od; 
(G,G): = (F,F) 
od; 

end 

When the dimension p of the underlying data is large, 
computing new nonlinear projections at each intermediate 
Step of a tour using the exemplary pseudocode algorithm for 
interpolated centroids can be computationally demanding. 
To alleviate the computational difficulty, the present inven 
tion can also generate a nonlinear cluster-guided tour based 
on interpolating projections instead of being based on inter 
polating centroids. The nonlinear cluster projections for both 
a current and a target projections can be computed to be 
{d(X.C.),d2(XC)}-1" and {d(X.C.),d2(XC)}-1", 
respectively. The interpolated projections are computed as 

where the interpolation parameter t is defined as Osts 1. An 
exemplary algorithm for implementing a nonlinear cluster 
guided tour based on interpolated projections is given by the 
following pseudocode: 

proc NonlinearClusterGuidedTourB (n, X}"-14C-1, stepSize) = 
(G.G.): = ChooseRandomlyFrom({C}, t): 
currentPlot: = NonlinearProject(n,{X}, i.G.G.); 
while (true) do 

(G.G.): = ChooseRandomlyFrom({C}); 
targetPlot: = NonlinearProject(n,{X}" GG2); 
for t: = 0.0 to 1 step stepSize do 

interpolated Plot: = t * targetPlot + (1 - t) * currentPlot: 
ScatterPlot (interpolated Plot); 

od; 
currentPlot: = targetPlot: 

od; 
end 

Although an interpolated projection is computationally 
faster than projecting onto interpolated centroids, interpo 
lated projections in Eq. (11) or in Eq. (12) cannot be 
interpreted in terms of Euclidean distances from a set of 
fixed points. 

The information loss for both linear and nonlinear cluster 
guided tours can be quantitatively characterized in terms of 
an average least-Squares reconstruction error as a figure of 
merit. To illustrate this, consider any three cluster centroids 
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10 
C, C, and C. in {C}. The two-plane determined by the 
three points L(CCC) is contained in the linear Subspace 

In other words, each of the () 2-dimensional linear 
cluster projections is contained in L({C}). A Smooth 
geodesic path from a current plane to a target plane is simply 
a rotation in the (at most) 4-dimensional space containing 
the current and the target planes. Consequently, every inter 
mediate two-plane on the Smooth path from any 
2-dimensional linear cluster projection to any other linear 
cluster projection is in L({C}). Effectively, the entire 
linear cluster-guided tour is contained in L({C}). Data 
features that are not contained in L({C}) will be com 
pletely missed by a data analyst observing a linear cluster 
guided tour. That is, having observed a linear cluster-guided 
tour, a data analyst can reconstruct the original data Set with 
no more accuracy that the amount of data variance contained 
in L({}-'). 
To show this, let k's(k-1) denote the dimension of 

L({C} ) and let {K} denote an orthonormal basis for 
L({C}). The dimension k' may be less than (k-1) 
because vectors (C-C) for 2sjsk may not be linearly 
independent. Having observed the linear cluster-guided tour, 
an analyst can learn the k" dimensional projection of each 
data point X, 1s isn, namely 

(X, KXK2, . . . XK). (14) 

Based on Eq. (14) and {K}-1, the best least-squares 
estimate of X is 

r (15) 

x - X (X, oK)K, e RP. 
i=l 

The information loSS of linear cluster-guided tours is an 
average least-Squares reconstruction error and is given by 

E(k) = iX. d;(x, st). (16) 
i=l 

Suppose that a data analyst has watched either of the two 
nonlinear cluster-guided tours represented by EqS. (9) and 
(10), and EqS. (11) and (12). Arguably, for every data point 
X, for 1s is n the analyst “knows” the Euclidean distance 
from X to each of the k cluster centroids, that is, 

.D.) (17) 

where 

D’=|X-C.I. 1. sisk. (18) 

Given these distances, the data point X must lie on the 
intersection of k spheres, S(C.D.), 1sjsk. That is, the data 
point X must lie on 

n-S(C.D.). (19) 

This interSection is a (p-k)-dimensional sphere in the linear 
variety N' ({C}), where N({C}) denotes a linear 
variety obtained by translating the orthogonal complement 
of the linear subspace L({C}). Since the data point X, 
can appear anywhere on the (p-k)-dimensional sphere, in 
the absence of further information, the nonlinear projection 
X^* of X, is defined as the center of the (p-k)-dimensional 
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Sphere. In this case, the least-Squares reconstruction error 
between X, and X, is simply the radius of the (p-k)- 
dimensional Sphere. 

FIG. 9 shows a complete 2-dimensional example illus 
trating the intuition behind the general p-dimensional case 
for a nonlinear projection. Consider a data point X that is 
fixed in R. Let C and C denote two cluster centroids in R. 
Suppose that the distances X-C and X-C are known. 
Based on this information, X must lie on the intersection of 
the spheres S(C, X-C) and S(C), X-C). The spheres 
interSect in two points that form a 0-dimensional Sphere. 
Because data point X can be either of the two interSection 
points, the nonlinear projection X,' selected to be the 
point that is equi-distant from both interSection points. This 
equi-distant point is precisely the center of the 
0-dimensional sphere. X,Y)(C) denotes the linear projec 
tion of (X-C) onto the linear space L(C,C)=SpanC 
C}. By definition of linear projection, A is orthogonal to 
X^*(C), and |A|=|X-C-IX' (C) can be com 
puted. The nonlinear projection of X can be written as 
X,Y) =X, (C)+C. The least-squares reconstruction 
error between X and X,Y) is |A|, which is known from 
above. X,Y) lies on the space N(C,C) that is obtained by 
translating the linear space L(C,C) by C or C. A need not 
be orthogonal to X,' and the origin O need not be 
contained in the Space N(C,C); hence, a nonlinear projec 
tion. 

Based on this, the reconstruction error d(XX,Y) can 
be computed. The information loSS of nonlinear cluster 
guided tours can then be computed as the average least 
Squares reconstructive error and is given by 

E(k) = iyai(x, s"). (20) 
i=l 

The k equations in Eq. (18) can be simplified using simple 
algebraic manipulation to obtain (k-1)-linear equations 

(C-C)(X-C)=%(d. (C,C)-D-D), 2sjsk, (21) 

and a quadratic equation 

|X-Cl’=D, . (22) 

Using the (k-1) linear equations in Eq. (21), a linear 
projection of (X-C) can be computed, for example X,' 
R)(C), onto the linear Subspace 

L({C}-1')=span {Co-C.Cs-C1, . . . , C-C}. (23) 

By definition of linear projection, A-((X-C,)-X,'(C)) 
and X, (C) are orthogonal. Thus, the least-squares error 
between (X-C) and X, (C) can be computed as 

where the Second equality follows from Orthogonality and 
Pythagoras theorem and the third equality follows from Eq. 
(22). The norm of X." k(C) can be computed by Simple 
linear algebraic calculations using Eq. (21). Of course, linear 
projections of (X-C) are not presently of interest, but a 
nonlinear projection of X, can now be written as 
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Clearly, 

where the last equality follows from Eq. (24). All the 
information necessary to compute Eq. (20) is now available. 

It follows from Eq. (25) that the nonlinear projection 
X' lies on the space N({C}), for example, which can 
be written as 

(27) 

There is nothing Special about centroid C, So any other 
centroid could have been selected as well. This implies that, 
for any 1Slsk, 

That is, the space N({C}- ) is obtained by translating the 
linear Subspace L({C} ) by any one of the centroids. The 
Space N({C}) is not necessarily a linear Subspace 
because it may not contain the origin. When the Space 
N({C}) contains the origin, that is, when the space 
L({C}- ) contains all the centroids {C}-1, then 

N({C} )=L({C}, . (29) 
and that 

Ev(k)=El (k). (30) 

For any given kisp, truncated Singular value decomposi 
tions provide the best linear projections in terms of average 
least-Squares reconstruction error. To compare the average 
least-Squares reconstruction error for linear and nonlinear 
cluster-guided tours to the least-Squares reconstruction error 
for truncated Singular value decompositions, consider an in X 
p data matrix X such that the i-th row of X is the data vector 
X, 1s isn. Using the Singular value decomposition, dis 
closed by W. H. Press et al., Numerical Recipes in C: The Art 
of Scientific Computing, Cambridge University Press, 1992, 

X=UXV, (31) 

where X=diag(O,O2, . . . .O.) is a pXp diagonal matrix of 
Singular values, U is a nxp matrix of right Singular vectors, 
and V is a pxp matrix of left Singular vectorS Such that 
UU=VV-1. Without any loss of generality, assume that 
O, eO2.2 . . . 2 O. For 1sksp, let X denote the pXp 
diagonal matrix obtained from X by Setting its Smallest (p-k) 
Singular values to Zero. An approximation to the data matrix 
can be constructed as 

X-UX.k V (32) 

Such as the i-th row of X, say X", is an approximation 
to the i-th row of X, for 1s isn. It is well-known that the 
average least-Squares reconstruction error of Such truncated 
Singular value decompositions is 

(33) 
Es(k) = iXi(x, 8) i), or. 

Ek 

FIG. 10(a) shows an Ionosphere data set having n=351 
data points and p=34 dimensions, E, (k+1), E(k), and E(k) 
plotted as a function of k, where k denotes the number of 
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clusters for the cluster-guided tours and the truncation 
parameter for the Singular value decomposition. The average 
least-square reconstruction errors in FIG. 10(a) have been 
normalized by the quantity (1/n)X, "IX. The Ionosphere 
data set is disclosed by C. J. Merz et al., UCI repository of 
machine learning databases, University of California, 
Department of Information and Computer Science, Irvine, 
Calif., and incorporated by reference herein. 

In FIG. 10(a), the average least-square error E, (k+1) for 
a linear cluster-guided tour having (k+1) clusters is com 
pared to the average least-square error E(k) for a nonlinear 
cluster-guided tour having k clusters, and to the average 
least-square error Es(k) for a truncated singular value 
decomposition having k components because all three aver 
age least-Square errors essentially define a k-dimensional 
projection. It can be seen from FIG. 10(a) that as the 
parameter k increases, E, (k+1), E(k), and Es(k) decrease 
monotonically to Zero. Thus, larger the parameter k, the 
Smaller the information loSS. 

Also, it can be seen that E(k+1)2Es(k) and that E(k) 
2Es(k), for all 2sksp. Consequently, truncated Singular 
value decomposition is the best in terms of average least 
Squares reconstruction error. Surprisingly, though, the linear 
and nonlinear cluster-guided tours are not much worse than 
truncated singular value decomposition. Also, E, (k+1)2E 
(k), for all 2sksp. Hence, for this data Set, the nonlinear 
cluster-guided tours are more informative that linear cluster 
guided tours. 

In FIG.10(b), the same comparison as that shown in FIG. 
10(a) is repeated, except that the Ionosphere data is centered 
by Subtracting the mean. Again, the average least-Square 
reconstruction errors in FIG.10(b) have been normalized by 
the quantity (1/n)X-"IX. For centered data, the origin is 
expected to be contained in N({C,{-"). Consequently, from 
Eq. (30) that E(k)=E,(k). Thus, in this case, E, (k+1), 
E(k+1), and Es(k) are plotted as a function of k, where k 
denotes the number of clusters for the cluster-guided tours 
and the truncation parameter for the Singular value decom 
position. AS expected, the average reconstruction errors of 
linear and nonlinear cluster-guided tours are almost the 
same. In all other aspects, the behavior shown in FIG.10(b) 
is identical to that in FIG. 10(a). 

Thus, linear and nonlinear cluster-guided tours are com 
parable to truncated Singular value decompositions. Further, 
nonlinear cluster-guided tours are Superior to linear cluster 
guided tours for non-centered data. For sparse data Sets, Such 
as text data or market basket data, centering is not a feasible 
option because the natural sparsity of Such a data Set would 
be completely destroyed by centering. In Such cases, non 
linear cluster-guided tours are expected to be of greater 
value that their linear counterpart. 

In view of this, the clusters produced by the k-means 
algorithm depend on the Starting centroids that are used for 
initializing the algorithm. Consequently, slightly different 
values for the average least-Squares reconstruction errors 
E,(k) and E(k) are obtained for different values of starting 
centroids. To minimize the fluctuations caused by Selection 
of starting centroids, the values for E(k) and E(k) shown 
in FIGS. 10(a) and 10(b) are an average of 10 runs of the 
k-means algorithm, where each run is initiated with respec 
tively different randomly-Selected Starting centroids. 

For X6R, c(X) is defined as the centroid closest to the 
point X amongst all k centroids {C}. By calculating the 
least-Square error for a nonlinear cluster-guided tour, it is 
possible to show that 
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14 
for each 1 sisk. Consequently, 

The left side of Eq. (36) is E(k), while the right side of Eq. 
(36) is simply the average least-squares error of the k-means 
algorithm. Thus, the average least-Squares reconstruction 
error of a nonlinear cluster-guided tour is upwardly bounded 
by the average least-Squares error for the k-means algorithm, 
which seeks to minimize its average least-Square error. 
Consequently, performing the k-means algorithm fortu 
itously minimizes the average least-Squares reconstruction 
error for a nonlinear cluster-guided tour. 

FIG. 11 shows the average least-square errors for the 
k-means algorithm 110 and for a nonlinear cluster-guided 
tour 111 as a function of the number of iterations (or steps) 
of the k-means algorithm of the Ionosphere with the number 
of clusters equal to 5. Both average least-Squares errors have 
been normalized by the dimension p=34. 

The cluster-guided tours of the present invention can be 
enhanced by using Similarity graphs, Such as disclosed by R. 
O. Duda et al., Pattern Classification and Scene Analysis, 
Wiley, 1973. To show this, suppose that the data points 
{X}" are clustered into k clusters. A cluster similarity 
graph is defined as follows: Let the Set of all cluster 
centroids define vertices of the Similarity graph. Add an edge 
between the cluster centroids C and C, when 

d(C,C)ST, (37) 

where T is a user-controlled threshold parameter. When T is 
very large, all centroids are connected. On the other hand, 
when T is very Small, no centroids are connected. It is thus 
intuitively clear that the choice of the threshold parameter is 
extremely important in revealing Similarities (or 
dissimilarities) between cluster centroids. To obtain “natu 
ral” connections between the centroids, T must be greater 
than typical distances between related clusters, but less than 
typical distances between unrelated clusters. 

According to the invention, a cluster Similarity graph is 
overlaid on the data Set while performing a cluster-guided 
grand tour. Explicitly including a cluster Similarity graph as 
a part of the cluster-guided grand tours provides a constant 
reminder of the inherent limitation of the display method. 
That is, just because two points appear close in a 
2-dimensional (linear or nonlinear) cluster projection, it 
does not follow that the points are also close in R. 
Furthermore, the edges of the cluster Similarity graph serve 
as a skeleton for the data, and help uncover interesting 
Structures and patterns. The cluster Similarity graph adds yet 
another dimension of information to cluster-guided grand 
tours-and hence enhances viewing experience. 

Conversely, cluster-guided grand tours provide an effec 
tive mechanism for visualizing the cluster Similarity graph in 
high-dimensions. A cluster Similarity graph is a collection of 
edges between various multi-dimensional points. Conven 
tional graph drawing techniqueS operate by embedding 
graphs in a plane, and then Visualizing the embedded graph. 
For example, See G. D. Battista et al., Algorithms for 
drawing graphs: an annotated bibliography, Computational 
Geometry: Theory and Applications, 4(5), pp. 235-282, 
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1994. When both the underlying dimensionality and the 
number of cluster centroids are large, conventional tech 
niques fail to provide an intuitive picture of the cluster 
Similarity graph. The present invention completely bypasses 
these problems by using the concepts of the cluster-guided 
grand tours. 

According to the present invention, it is also possible to 
overlay a cluster-guided tour with other structures, Such as 
relative neighborhood graphs and Gabriel graphs, and mini 
mum spanning trees. 

FIG. 12 shows a program Storage device 120 having a 
Storage area 121. Information Stored in the Storage area in a 
well-known manner that is readable by a machine, and that 
tangibly embodies a program of instructions executable by 
the machine for performing the method of the present 
invention described herein for automatically finding Sub 
Spaces of the highest dimensionality in a data Space for data 
mining applications. Program Storage device 120 can be a 
magnetically recordable medium device, Such as a magnetic 
diskette or hard drive, or an optically recordable medium 
device, Such as an optical disk. 

While the present invention has been described in con 
nection with the illustrated embodiments, it will be appre 
ciated and understood that modifications may be made 
without departing from the true Spirit and Scope of the 
invention. 
What is claimed is: 
1. A method for visualizing a multi-dimensional data Set, 

the method comprising the Steps of 
clustering the multi-dimensional data Set into k clusters, 

each cluster having a centroid; 
Selecting one of two distinct current centroids and three 

distinct non-collinear current centroids, 
generating a current 2-dimensional cluster projection 

based on the Selected current centroids, 
Selecting two distinct target centroids when two distinct 

current centroids are Selected, at least one of the two 
target centroids being different from the two current 
centroids, 

Selecting three distinct non-collinear target centroids 
when three distinct non-collinear current centroids are 
Selected, at least one of the three target centroids being 
different from the three current centroids; and 

generating an intermediate 2-dimensional cluster projec 
tion based on the current centroids and the target 
centroids. 

2. The method according to claim 1, further comprising 
the Step of associating each current centroid with a target 
centroid, and 
wherein the Step of generating the intermediate 

2-dimensional cluster projection is based on a Set of 
interpolated centroids, each interpolated centroid of the 
Set of interpolated centroids corresponding to a current 
centroid and to the target centroid associated with the 
current centroid, and each interpolated centroid being 
interpolated between the corresponding current cen 
troid and the associated target centroid. 

3. The method according to claim 2, wherein the set of 
interpolated centroids varies between the current centroids 
and the target centroids based on a value of an interpolation 
parameter. 

4. The method according to claim 3, wherein Step of 
generating the intermediate 2-dimensional cluster projection 
is repeated for different values of the interpolation param 
eter. 

5. The method according to claim 4, wherein the value of 
the interpolation parameter is monotonically increased when 
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16 
repeatedly generating the intermediate 2-dimensional cluster 
projection, thereby generating a holistic image of the multi 
dimensional data Set with respect to the current centroids 
and the target centroids. 

6. The method according to claim 5, further comprising 
the Steps of: 

defining the Selected target centroids to be new current 
centroids, 

Selecting two distinct new target centroids when two new 
current centroids are defined from the Selected target 
centroids, at least one of the two distinct new target 
centroids being different from the two new current 
centroids, 

Selecting three distinct non-collinear new target centroids 
when three distinct non-collinear new current centroids 
are defined from the Selected target centroids, at least 
one of the three distinct non-collinear new target cen 
troids being different from the three distinct non 
collinear new current centroids, 

asSociating each new current centroid with a new target 
centroid; and 

generating the intermediate 2-dimensional cluster projec 
tion based on a set of new interpolated centroids, each 
interpolated centroid of the new set of interpolated 
centroids corresponding to a new current centroid and 
to the new target centroid associated with the new 
current centroid, and each new interpolated centroid 
being interpolated between the corresponding new cur 
rent centroid and the associated new target centroid. 

7. The method according to claim 6, where in the steps of 
defining new current centroids, Selecting new target 
centroids, asSociating each new current centroid with a new 
target centroid, and generating the intermediate 
2-dimensional cluster projection are performed repeatedly, 
thereby generating a holistic image of the multi-dimensional 
data Set with respect to each Set of current centroids and the 
asSociated target centroids. 

8. The method according to claim 7, further comprising 
the Steps of: 

calculating an average least-Squares reconstruction error 
for at least one 2-dimensional cluster projection; 

calculating an average least-Squares reconstruction error 
based on a truncated Singular value decomposition of 
the data Set, and 

comparing each average least-Square reconstruction error 
and the average least-Square construction error based 
on the truncated Singular value decomposition of the 
data Set. 

9. The method according to claim 8, further comprising 
the Step of displaying the comparison of the average least 
Square reconstruction error for the 2-dimensional cluster 
projection and the average least-Square construction error 
based on the truncated Singular value decomposition of the 
data Set. 

10. The method according to claim 1, where in the step 
of generating the intermediate 2-dimensional cluster projec 
tion generates an interpolated 2-dimensional nonlinear clus 
ter projection based on the Selected current centroids and the 
Selected target centroids. 

11. The method according to claim 10, wherein interme 
diate 2-dimensional cluster projection is further based on a 
value of an interpolation parameter. 

12. The method according to claim 11, wherein step of 
generating the intermediate 2-dimensional cluster projection 
is repeated for different values of the interpolation param 
eter. 
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13. The method according to claim 12, wherein the value 
of the interpolation parameter is monotonically increased 
when repeatedly generating the intermediate 2-dimensional 
cluster projection, thereby generating a holistic image of the 
multi-dimensional data Set with respect to the current cen 
troids and the target centroids. 

14. The method according to claim 13, the step of 
repeatedly generating the intermediate 2-dimensional cluster 
projection for different values of the interpolation parameter 
generates a plurality of 2-dimensional cluster projections 
that follows a geodesic path between the current centroids 
and the target centroids. 

15. The method according to claim 13, further comprising 
the Steps of: 

defining the Selected target centroids to be new current 
centroids, 

Selecting two distinct new target centroids when two new 
current centroids are defined from the Selected target 
centroids, at least one of the two distinct new target 
centroids being different from the two new current 
centroids, 

Selecting three distinct non-collinear new target centroids 
when three distinct non-collinear new current centroids 
are defined from the Selected target centroids, at least 
one of the three distinct non-collinear new target cen 
troids being different from the three distinct non 
collinear new current centroids, and 

generating the intermediate 2-dimensional cluster projec 
tion based on the new current centroids and the new 
target centroids. 

16. The method according to claim 15, where in the steps 
of defining new current centroids, Selecting new target 
centroids and generating the intermediate 2-dimensional 
cluster projection are performed repeatedly, thereby gener 
ating a holistic image of the multi-dimensional data Set with 
respect to each Set of current centroids and the target 
centroids. 

17. The method according to claim 16, further comprising 
the Steps of: 

calculating an average least-Squares reconstruction error 
for at least one 2-dimensional cluster projection; 

calculating an average least-Squares reconstruction error 
based on a truncated Singular value decomposition of 
the data Set, and 

comparing each average least-Square reconstruction error 
and the average least-Square construction error based 
on the truncated Singular value decomposition of the 
data Set. 

18. The method according to claim 17, further comprising 
the Step of displaying the comparison of the average least 
Square reconstruction error for the 2-dimensional cluster 
projection and the average least-Square construction error 
based on the truncated Singular value decomposition of the 
data Set. 

19. The method according to claim 1, further comprising 
the Steps of: 

calculating an average least-Squares reconstruction error 
for a 2-dimensional cluster projection when two dis 
tinct current centroids are Selected; 

calculating an average least-Squares reconstruction error 
based on a truncated Singular value decomposition of 
the data Set, and 

comparing the average least-Square reconstruction error 
for the 2-dimensional cluster projection and the average 
least-Square construction error based on the truncated 
Singular value decomposition of the data Set. 
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20. The method according to claim 19, further comprising 

the Step of displaying the comparison of the average least 
Square reconstruction error for the 2-dimensional cluster 
projection and the average least-Square construction error 
based on the truncated Singular value decomposition of the 
data Set. 

21. A program Storage device comprising: 
a storage area; and 
information Stored in the Storage area, the information 

being readable by a machine, and tangibly embodying 
a program of instructions executable by the machine for 
performing method Steps for Visualizing a multi 
dimensional data Set, the method comprising the Steps 
of: 
clustering the multi-dimensional data Set into k 

clusters, each cluster having a centroid; 
Selecting one of two distinct current centroids and three 

distinct non-collinear current centroids, 
generating a current 2-dimensional cluster projection 

based on the Selected current centroids, 
Selecting two distinct target centroids when two distinct 

current centroids are Selected, at least one of the two 
target centroids being different from the two current 
centroids, 

Selecting three distinct non-collinear target centroids 
when three distinct non-collinear current centroids 
are Selected, at least one of the three target centroids 
being different from the three current centroids, and 

generating an intermediate 2-dimensional cluster pro 
jection based on the current centroids and the target 
centroids. 

22. The program Storage device according to claim 21, 
wherein the method further comprises the Step of associating 
each current centroid with a target centroid, and 
where in the Step of generating the intermediate 

2-dimensional cluster projection is based on a Set of 
interpolated centroids, each interpolated centroid of the 
Set of interpolated centroids corresponding to a current 
centroid and to the target centroid associated with the 
current centroid, and each interpolated centroid being 
interpolated between the corresponding current cen 
troid and the associated target centroid. 

23. The program Storage device according to claim 22, 
wherein the set of interpolated centroids varies between the 
current centroids and the target centroids based on a value of 
an interpolation parameter. 

24. The program Storage device according to claim 23, 
wherein Step of generating the intermediate 2-dimensional 
cluster projection is repeated for different values of the 
interpolation parameter. 

25. The program Storage device according to claim 24, 
wherein the value of the interpolation parameter is mono 
tonically increased when repeatedly generating the interme 
diate 2-dimensional cluster projection, thereby generating a 
holistic image of the multi-dimensional data Set with respect 
to the current centroids and the target centroids. 

26. The program Storage device according to claim 25, 
wherein the method further comprises the steps of: 

defining the Selected target centroids to be new current 
centroids, 

Selecting two distinct new target centroids when two new 
current centroids are defined from the Selected target 
centroids, at least one of the two distinct new target 
centroids being different from the two new current 
centroids, 

Selecting three distinct non-collinear new target centroids 
when three distinct non-collinear new current centroids 
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are defined from the Selected target centroids, at least 
one of the three distinct non-collinear new target cen 
troids being different from the three distinct non 
collinear new current centroids, 

asSociating each new current centroid with a new target 
centroid; and 

generating the intermediate 2-dimensional cluster projec 
tion based on a set of new interpolated centroids, each 
interpolated centroid of the new set of interpolated 
centroids corresponding to a new current centroid and 
to the new target centroid associated with the new 
current centroid, and each new interpolated centroid 
being interpolated between the corresponding new cur 
rent centroid and the associated new target centroid. 

27. The program Storage device according to claim 26, 
wherein the Steps of defining new current centroids, Select 
ing new target centroids, associating each new current 
centroid with a new target centroid, and generating the 
intermediate 2-dimensional cluster projection are performed 
repeatedly, thereby generating a holistic image of the multi 
dimensional data Set with respect to each Set of current 
centroids and the associated target centroids. 

28. The program Storage device according to claim 27, 
wherein the method further comprises the steps of: 

calculating an average least-Squares reconstruction error 
for at least one 2-dimensional cluster projection; 

calculating an average least-Squares reconstruction error 
based on a truncated Singular value decomposition of 
the data Set, and 

comparing each average least-Square reconstruction error 
and the average least-Square construction error based 
on the truncated Singular value decomposition of the 
data Set. 

29. The program Storage device according to claim 28, 
wherein the method further comprises the Step of displaying 
the comparison of the average least-Square reconstruction 
error for the 2-dimensional cluster projection and the aver 
age least-Square construction error based on the truncated 
Singular value decomposition of the data Set. 

30. The program Storage device according to claim 21, the 
Step of generating the intermediate 2-dimensional cluster 
projection generates an interpolated 2-dimensional nonlin 
ear cluster projection based on the Selected current centroids 
and the Selected target centroids. 

31. The program Storage device according to claim 30, 
wherein intermediate 2-dimensional cluster projection is 
further based on a value of an interpolation parameter. 

32. The program Storage device according to claim 31, 
wherein Step of generating the intermediate 2-dimensional 
cluster projection is repeated for different values of the 
interpolation parameter. 

33. The program Storage device according to claim 32, 
wherein the value of the interpolation parameter is mono 
tonically increased when repeatedly generating the interme 
diate 2-dimensional cluster projection, thereby generating a 
holistic image of the multi-dimensional data Set with respect 
to the current centroids and the target centroids. 

34. The program Storage device according to claim 33, the 
Step of repeatedly generating the intermediate 2-dimensional 
cluster projection for different values of the interpolation 
parameter generates a plurality of 2-dimensional cluster 
projections that follows a geodesic path between the current 
centroids and the target centroids. 
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35. The program Storage device according to claim 33, 

wherein the method further comprises the steps of: 
defining the Selected target centroids to be new current 

centroids, 
Selecting two distinct new target centroids when two new 

current centroids are defined from the Selected target 
centroids, at least one of the two distinct new target 
centroids being different from the two new current 
centroids, 

Selecting three distinct non-collinear new target centroids 
when three distinct non-collinear new current centroids 
are defined from the Selected target centroids, at least 
one of the three distinct non-collinear new target cen 
troids being different from the three distinct non 
collinear new current centroids, and 

generating the intermediate 2-dimensional cluster projec 
tion based on the new current centroids and the new 
target centroids. 

36. The program Storage device according to claim 35, 
wherein the Steps of defining new current centroids, Select 
ing new target centroids and generating the intermediate 
2-dimensional cluster projection are performed repeatedly, 
thereby generating a holistic image of the multi-dimensional 
data Set with respect to each Set of current centroids and the 
target centroids. 

37. The program Storage device according to claim 36, 
wherein the method further comprises the steps of: 

calculating an average least-Squares reconstruction error 
for at least one 2-dimensional cluster projection; 

calculating an average least-Squares reconstruction error 
based on a truncated Singular value decomposition of 
the data set, and 

comparing each average least-Square reconstruction error 
and the average least-Square construction error based 
on the truncated Singular value decomposition of the 
data Set. 

38. The program Storage device according to claim 37, 
wherein the method further comprises the Step of displaying 
the comparison of the average least-Square reconstruction 
error for the 2-dimensional cluster projection and the aver 
age least-Square construction error based on the truncated 
Singular value decomposition of the data Set. 

39. The program Storage device according to claim 21, 
wherein the method further comprises the steps of: 

calculating an average least-Squares reconstruction error 
for a 2-dimensional cluster projection when two dis 
tinct current centroids are Selected; 

calculating an average least-Squares reconstruction error 
based on a truncated Singular value decomposition of 
the data Set, and 

comparing the average least-Square reconstruction error 
for the 2-dimensional cluster projection and the average 
least-Square construction error based on the truncated 
Singular value decomposition of the data Set. 

40. The program Storage device according to claim 39, the 
method further comprises the Step of displaying the com 
parison of the average least-Square reconstruction error for 
the 2-dimensional cluster projection and the average least 
Square construction error based on the truncated Singular 
value decomposition of the data Set. 

k k k k k 
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